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Lionel Penrose’s 1933 study 
was one of the first to estab-
lish that “the father’s age is 

not a significant factor in the risk 
of Down’s syndrome, while the 
mother’s age is to be regarded as 
very important.” We identify the 
statistical consultant who helped 
Penrose improve on the prevailing 
regression methods for handling 
binary responses. Using a form of 
“statistical sudoku,” we explain how 
to create complete data sets from 
the summary data Penrose worked 
with and shared, and we describe the 
surprises we got when we applied 
modern methods to these data sets.

The story is a mix of epidemiol-
ogy, genetics, statistics, optimization, 
history, and statistical archaeology. 
It is a chance to reflect on how far 
we have come in statistical methods 
and computing in the last 90 years 
but also an important lesson on what 
we have forgotten or missed along 
the way.

The 1933 Analyses 
and the Until-Now-
Unknown Statistical 
Consultant
Penrose, a physician, geneticist, and 
statistician, told us where his data 
came from:

Lionel Penrose’s Statistical 
Consultant and Lessons 
from the Statistical 
“Sudoku” They Left Us
James A. Hanley and Supratik Roy

[...] 150 families of the human 
species containing Down’s 
syndrome among the chil-
dren. Every family included 
was visited personally and, 
among other things, the ages 
of the parents at the birth of 
each child was [sic] carefully 
recorded: miscarriages and all 
individuals in whom a diag-
nosis of normality or Down’s 
syndrome could not be made 
with certainty were excluded. 
No obvious disparity was 
observed between the ages 
of the parental pairs, which 
were distributed in a man-
ner resembling that found by 
pooling all married couples 
in the general population [...]

From what we can tell, Penrose 
did all of his analyses using three 
sets of marginal (2-D) frequencies, 
which he provided in a single table 
titled “Summary of Data.”

 It summarized the data on 154 
cases of Down syndrome and 573 
normal1 children from these same 
150 families. With just the last 
row label and the last column label 
altered to reflect modern-day ter-
minology, we have reproduced that 
table in Figure 1, and on our web-
page (https://jhanley.biostat.mcgill.
ca/StatisticalSudoku). It contained 

the three (2-D) marginal distribu-
tions but stopped short of giving 
the full 3-D distribution. Penrose 
omitted the cell-specific distribu-
tions of N and D’s.

Penrose’s challenge was how 
to deal with the tricky statistical 
issue that today we call confound-
ing. The strong correlation of the 
parent’s ages means that when the 
father’s age or the mother’s age is 
considered on its own, the prob-
ability that a child is affected by 
Down’s syndrome will seem to be 
strongly related to that parent’s age. 
So, how to disentangle the separate 
contributions?

Penrose’s First Method 
of Analysis
Penrose’s first approach was bor-
rowed from an eminent Ameri-
can geneticist. A decade earlier, in 
research on essential factors in the 
occurrence of congenital defects 
in guinea pigs, Sewall Wright had 
used partial correlations to show 
that once one removed (eliminated) 
the effect of the mother’s age, there 
was no effect of the father’s age. 
“Attempt[ing] a similar treatment,” 
Penrose calculated the three crude 
and two partial correlations shown 
in Table 1.

1Today, one might refer to children who are or are not “affected by Down Syndrome.” We will sometimes use the original and sometimes 
the modern, and, to accommodate international readers, we will use both Down and Down’s syndrome.
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The two “crude” correlations 
involving the binary indicator D 
(affected or not) are calculated from 
the two corresponding marginal 
frequencies (i.e., they are collapsed 
over (i.e., they ignore) the age of 
the other parent). They are both 
strong. Not surprisingly, the cor-
relation between the parents’ ages is 
very high: 0.829. But when Penrose, 
as social scientists like to say, “par-
tialed out” the effect of the age of 

that other parent, the effect of the 
mother’s age remained, but the effect 
of the father’s age disappeared. As he 
went on to say in his paper, paternal 
age is not a significant factor, while 
maternal age is to be regarded as  
very important.

Today the idea of computing 
a Pearson correlation between a 
binary (0/1) Y and a quantitative 
X seems strange, but it was com-
mon back then. However, Penrose 

did anticipate readers’ discomfort 
with correlations involving a binary  
all-or-none) variable, so he also used 
a crisper alternative analysis.

Penrose’s Second 
Method of Analysis
As many people still do with data 
from “case-control” studies, Penrose 
first compared the mean parental 
ages of the Down syndrome and 

Figure  1. Reproduction of Penrose’s Table I. The abbreviation “N” (for “Normal”) used in the penultimate row, and column labels remain 
unchanged, but the letter “D” (abbreviation for “Down Syndrome”) used in the ultimate row and column labels has been selected to 
reflect modern-day terminology. As is discussed in the next section, the last two rows contain  two errors: One needs to change the 4:5 
at maternal age 46 to a 3:6 split and the 3:1 at maternal age 47 to a 2:2 split.
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non-Down syndrome children. 
In the two parent-specific com-
parisons (means 39.3 vs. 33.8 and  
37.2 vs. 31.2, shown under “Actual” 
in Table 2), the parents of children 
with Down syndrome are decid-
edly older.

But the differences leave open 
whether there is just one culprit 
or two joint culprits. To settle this,  
Penrose used the two fitted equa-
tions to compute the expected 
(predicted) age of fathers, given 
the mothers’ ages, and vice versa. 

When he substituted the observed 
mothers’ ages (here 35.7 and 31.6) 
into the first equation to get the 
expected ages of the fathers, he 
found that they were very close to 
the observed ones. Conversely, when 
he proceeded in the other direction, 
and substituted the observed fathers’ 
ages into the second equation, he 
got two expected mothers’ ages that 
don’t match very well with those he 
observed. The discrepancy of almost 
two years left Penrose in no doubt as 
to which parent’s age drives the risk.

Penrose’s  
Never-Mentioned 
Consultant, 1932
In 2007, in a fresh look at that second 
method, Oliver Penrose brought out 
some of the subtleties that under-
lay the apparent simplicity of the 
“beautiful method of analysis” in his 
father’s 1933 paper. Oliver, born in 
1929, still remembers that “when I 
was about four years old[,] I would 
sometimes venture into my father’s 
study, to find him doing what I 

Table 1—Correlations, Crude and Partial, Obtained from Data Summarized in 
Penrose’s Table, where “Downs” is an Indicator (0/1) of Down’s Syndrome

Table 2—Mean Ages of Parents of Down’s Syndrome and  
Normal Children, with Expected/Predicted Means
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described at the time as ‘red and 
blue busywork.’”

Sixty years later he realized, on 
looking up the 1933 paper, that the 
work his father was doing with his 
red and blue pencils may well have 
been the computations for that 
paper. He described the collection 
of this data—“a tour de force of dedi-
cated field work by his father and 
his two assistants working from the 
Royal Eastern Counties Institution 
in Colchester”—as a group effort: 
“But it was my father on his own 
who invented the method of analysis 
that induced this confusing jumble 
of data to give up its secret.” Until 
author Hanley contacted him in 
2014, Oliver Penrose was not aware 
of some relevant correspondence in 
the Penrose Papers at University 
College London (https://archives.
ucl.ac.uk/CalmView). This archival 
material has since been digitized 
and put online, and it reveals a  
hitherto-unknown consultation 
regarding the statistical methods 
used in that paper.

On October 29, 1932, Penrose 
wrote to “Dr. Fisher,” telling him 
he had been “working out some 
statistical results” in connection 
with mother’s age [M] and father’s 
age [F] and their relative affects in 
Down’s syndrome. Using the term 
“incidence of Down’s syndrome” for 
what today we would call the 0/1 
indicator variable, he shared with 
Fisher the following three crude 
correlations calculated from the first 
50 families available: M and inci-
dence of Down’s syndrome 0.44; F 
and incidence of Down’s syndrome 
0.34; M and F (for every child in 
each family) 0.73, along with the 
two partial correlations: between M 
and incidence of Down’s syndrome 
(eliminating F) 0.30; and between F 
and incidence of Down’s syndrome 
(eliminating M) 0.03. He then got 
to “[t]he question I want to ask you”:

How many families will be 
required to give significance 
to these results, which appear 
to show that maternal age 
is of importance but pater-
nal age insignificant? I have 

available nearly 200 families 
and have every reason to sup-
pose that similar figures will 
be obtained from the whole 
group to those I have found in 
the first 50 families. The ques-
tion of significance is rather 
troublesome because I am 
not sure what the effect is of 
having several of the children 
in the same family and am 
doubtful whether the ordi-
nary methods of finding the 
standard deviations of these 
coefficients are applicable 
here. If you think that about 
180 families would give a sig-
nificant result, it seems to me 
that it is an elegant method of 
demonstrating what has been 
rather a vexed question for 
some time.  
—from the Penrose archives 
at UCL.
The UCL archives do not con-

tain Fisher’s reply, but a carbon 
(and now digitized) copy of it is 
available online at the University of 
Adelaide. It bears out the present 

Figure 2. Reply from R.A. Fisher to Penrose’s October 29 letter. Some of their terminology is no longer used. Image cour-
tesy of University of Adelaide.
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authors’ observation that often, it is 
not the original question (here to 
do with sample size and standard 
errors when one has correlated fam-
ily data) one puts to the consultant 
that matters most. Instead, as in the 
reply shown in Figure 2, it is the 
entirely different way of looking at 
the data that an outside consultant 
suggests. A lot has been written 
about Fisher’s disdain for some of 
Karl Pearson’s work, and there is 
a hint of it in the first sentence of 
his reply. But this is immediately 
followed by a very insightful and 
transparent approach to settling 
the issue of whether the father’s 
age matters: use the fathers’ ages 
corrected for mothers’ ages.

Fisher’s next paragraph addressed 
the question of sample size, and then 
he ends with what all statisticians 
should also worry about, the qual-
ity of the data. And he can’t resist 
taking a parting shot at the idea of 
using correlations using imaginary 
(“binary”) variates—his adversary 
Pearson often used such variates  
in correlations.

2023: Reconstructed 
Data, Modern 
Analyses, and  
a Surprise
Listed in Table 3 are some of the 
statistical tools that have been 
developed since then to specifi-
cally handle all-or-none outcomes 

represented by “imaginary” (binary) 
variates. And so, a decade ago (not-
withstanding the “outcome-based” 
selection of families and the fact that 
the data is not segregated by fam-
ily) we asked students in a graduate 
data-analysis course to apply them 
to the data in Penrose’s table.

However, they weren’t able to 
convert these frequencies into a 
contemporary data frame with 727 
rows (one per child) and three col-
umns: mother’s age, father’s age, 
and the Bernoulli variate affected 
or not—or, equivalently, 325 rows, 
one per cell, of binomial splits—that 
would allow them to apply these 
modern day regression techniques. 
Their main complaint was that they 
were missing the cell-specific splits 
of the frequencies of affected and 
unaffected children. And, to add to 
their frustration, they noticed that 
Penrose’s data-tables had at least one 
error that might not be resolvable, 
or might only after a considerable 
amount of trial and error.

In an effort to reconstruct the 
complete data, JH put Penrose’s 
table online and offered a prize for 
splitting (unpacking) the frequencies. 
He didn’t get much interest in this 
challenge—which he called a “Statis-
tical Sudoku”—until the summer of 
2023 when he visited his alma mater 
and met his co-author, SR.

Reconstruction
SR’s first idea was to try Bayesian 
methods, which are often used to 
reconstruct joint distributions from 
marginal ones. But we effectively 
had only one sample or view. In 
computed tomography imaging, for 
example, one reconstructs the tissue 
densities in a cross-section using as 
many marginal views as there are 
rotations of the radiation source. 
The traditional techniques, such as 
those used in compressive sampling/
sensing, need a sufficient number of 
samples to estimate the parametric 
part of the model. Moreover, any 
such reconstruction would have to 
be model-based.

Instead, he noted that the chal-
lenge was similar in structure to a 
network flow problem, known as 
the “optimal transport” problem in 
the optimization literature. Thus 
it can be seen as an integer linear 
programming problem. However, 
when he coded it, the lp function in 
the lpSolve package in R could not 
find a feasible solution. He traced 
the imbalance in the system back 
to errors in Penrose’s table: whereas 
the row-specific totals for the dif-
ferent father’s ages (at the rightmost 
margins of Table 1) summed to the  
overall numbers of 573 normals 
and 154 cases, the column-specific 
totals for the different mother’s ages 
summed to 575 and 152. When  
he changed the 27:7 marginal 

Table 3—Some Developments in Regression-Type Models for Binary Responses, 1933–1973
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frequencies in the mother-aged-34 
category to a 25:9 split, the result-
ing mean maternal ages were lower 
than those reported in the text of  
Penrose’s article. However, by pro-
ceeding systematically, we found that 
changing the 4:5 split at age 46 to a 
3:6 one, and the 3:1 split at age 47 
to a 2:2 one gave mean ages—and 
a crude correlation—that numeri-
cally matched those reported in the 
article. Thus we are confident that the 
errors were in the typesetting of the 

table and that Penrose did not use the 
typeset version in his computations.

Once these corrections were 
made, SR was able to use the lp 
function to find a feasible solution. 
Our website gives the technical 
details (https://jhanley.biostat.mcgill.
ca/StatisticalSudoku).

Our First Reanalyses
Once he had obtained a solution 
(leftmost panel of Figure 3), we 
revisited Penrose’s conclusion using 

two approaches developed since 
then. First we fitted a linear dis-
criminant function of the parental 
ages—a technique that Fisher pub-
lished in 1936, just three years after 
advising Penrose on how to avoid 
calculating correlations involving 
an “imaginary” Y variate. As can be 
seen from that panel, the weight 
(coefficient) for the mother’s age is 
more than 20 times the one for the 
fathers’ age, so the “dividing line” 
between Down’s syndrome and  

Figure 3. Two “Sudoku” solutions (one per panel), along with the linear discriminant and logistic regression functions fitted to the 3-D data 
corresponding to each of these two solutions. (See text for two minor pre-processing corrections to the printed Table 1 in Penrose, 1933.) 
Within each panel, the imputed numbers of Downs and normal children within each “parental-ages” cell are shown in red and gray respec-
tively. The parent-specific marginal (2-D) distributions are shown along the bottom and rightmost margins, and the overall numbers in a slightly 
larger font at the bottom right corner. The boundary implied by each linear discriminant function is shown in blue.



VOL. 38.3, 2025

26

normal children is almost vertical 
(i.e., almost entirely determined by 
the age of the mother).

Our second approach was to 
use a logistic regression model, a 
technique with several histori-
cal roots. A lesser-known root is 
the discriminant function that  
Cornfield derived from data col-
lected in the Framingham Heart 
Study and then converted into a 
logistic-shape risk (probability) 
function of the scores. The panel 
inset shows that, just as in Penrose’s 
analyses, of the two one-parent 
logistic regressions, the one involv-
ing the mother is the stronger one—
but that in the model that considers 
them jointly, the coefficient for the 
mother’s age dominates. Indeed, 
given the connection that Cornfield 
exploited, it is not surprising that 
the two coefficients in the logistic 
regression (0.162 and −0.011) are 
close to their counterparts in the 
linear discriminant function (0.163 
and −0.070).

Multiple Solution Sets—
and a Surprise
JH had contacted Oliver Penrose in 
2014 and asked where we might find 
the raw data his father had used, but 
he had no suggestions beyond those 
locations where we had already 
looked. But he did point out that 
“[our] ‘sudoku’ problem appears to 
have multiple solutions in general” 
and provided a toy example. At that 
time, JH would have been happy 
to have even one. But now, just by 
altering the order in which the 398 
constraints on the 325 unknowns 
appear in the (quite sparse) con-
straints matrix, we can use the lp 
software to generate as many sepa-
rate solutions as we wish. Two such 
solutions are shown in Figure 3.

Before arriving at these solutions, 
JH had loosely likened the multiple 
possible solutions to the different 
data set “copies” used in multiple 
imputation when one has missing 

values. Thus, after fitting a multiple 
logistic regression to each of the (say 
m) solution-sets, he envisaged first 
computing the average variance-
covariance of the m vectors of fitted 
coefficients, and then, employing 
“Rubin’s Rule,” adding to it the 
between-copy variance-covariance 
of the m vectors.

We were surprised to learn 
that—as is hinted at in Figure 3—
every solution set yields exactly the 
same vector of fitted coefficients. 
The invariance also held when we 
fitted a linear discriminant function 
of the parental ages and when we 
computed the old-fashioned par-
tial correlations that Wright and  
Penrose had used.

After some reflection, the reason 
for this invariance became clear to 
us. The marginal totals serve as suf-
ficient statistics. Nowadays, tedious 
calculations are carried out by a 
machine rather than a human whose 
job-description was “computer;” and 
so the labor-saving property of suf-
ficient statistics is less appreciated/
used. Our website shows the form 
of the sufficient statistics in a more 
general form of a multiple logistic 
regression where the parental age 
(M and F) effects are represented 
as two separate splines; with no 
product terms involving both ages. 
In the special/simplest case where 
they are just linear, and additive, 
the sufficient statistics for the three 
parameters consist of three num-
bers: the number of cases of Down’s 
syndrome: 154; the sum of the ages 
of their 154 mothers: 5,736 years; 
and their 154 fathers: 6,065 years. 
Equating the partial derivatives of 
the log-likelihood to zero results 
in three balancing equations that 
equate these three sufficient statis-
tics to their three expected/fitted 
values. Finding this balance requires 
an iterative search, but within any 
given parental age “cell” one does 
not need to know how many of the 
children in the cell were affected and 
how many were not.

Penrose’s calculations involved 
just one pass though the data. His 
computing equipment consisted of 
a “handle-powered desk calculating 
machine called the Brunsviga.” He 
exploited the labor-saving “suffi-
ciency principle” by processing the 
325 cell frequencies to compute the 
marginal relationship between the 
parents’ ages, the 31 × 2 frequencies 
to arrive at the marginal relation-
ship between the mother’s ages and 
Down’s syndrome, and the 42 × 2 
frequencies to arrive at the marginal 
relationship between the fathers’ 
ages and Down’s syndrome.

In the 1970s, when non-human 
computers were making the concept 
of sufficiency less relevant in applied 
statistics, Stephen Stigler, writing 
in Biometrika, advanced another 
reason: The concept “depends so 
strongly on the assumed form of 
the population distribution.” Since 
then, the growth of computational 
methods in Bayesian statistics has 
largely restored the central role of 
sufficient statistics, but also brought 
model fit/adequacy to the forefront 
again. In that same cautious spirit 
that Stigler alludes to, the additional 
analyses shown on our website are 
limited to form(model)-free mea-
sures that align with Penrose’s focus 
on null-hypothesis testing. We leave 
it to interested readers and teachers 
to explore model-based approaches, 
while recognizing the limited resolv-
ing power provided by the large age 
correlations and the relatively small 
numbers of events in the data set.

Discussion
Even though Penrose’s “response” 
variable was binary, partial correla-
tions were all that were available to 
him at the time. However, as the 
archives now document, it was not 
Penrose who “on his own invented 
[...] the [alternative] beautiful 
method of analysis” his son sub-
sequently extolled. Rather, it was 
Ronald Fisher who showed him 
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an alternative to calculating cor-
relations involving an “imaginary” 
Y variate.

 This was not an isolated fix. Just 
a few years later, Fisher general-
ized this method of exchanging the 
role of the response and predictor 
variables when he published the lin-
ear discriminant function for use in 
taxonomic problems.

It would take several decades 
before the fitting of generalized 
linear models for binary response 
data became practical. But by 2014, 
when we gave Penrose’s data to the 
students in our data analysis course, 
the R software for fitting a logistic/
probit regression model was widely 
and freely accessible. All they had 
to do was to create the data-frame. 
However, because Penrose seemed 
to “withhold” some of his data, they 
were unable to do so. They did not 
have the background training in 
mathematical statistics to go back 
to first principles and see their way 
around this difficulty. Their teach-
ers could have, but they preferred a 
brute force approach.

At first, we were quite proud of 
our 2023 use of integer linear pro-
gramming to provide thousands of 
data-frames with individual-level 
data, all in the blink of an eye. But 
we were soon brought back down 
to earth when we (or, rather, the 
computer!) fitted a binary regression 
model to these different solutions, 
all with the same marginal totals 
as Penrose worked with. No matter 
the within-cell binomial frequen-
cies, the fitted coefficients did not 
change. Penrose’s marginal totals 
acted as sufficient statistics.

In 1933, the concept of “suffi-
cient statistics” had a very important 
application. It reduced human com-
putational labor. In 2023, sufficient 
statistics (and exponential families) 
are concepts that are of practical use 
in intensive Bayesian computations, 
and in data-sharing policies that 
encourage data privacy. However, 
for the most part they are limited to 

courses in mathematical statistics 
and inference, where unfortunately 
the teaching of them consists mainly 
of exercises in calculus. Today’s 
computer-processing speeds make 
it harder to motivate reducing the 
data to sufficient statistics. In line 
with the pleas of Nicholas Horton 
(Amherst College) and others to 
make such courses more relevant, 
today’s teachers could encourage 
their students to appreciate the 
statistical importance of the con-
cept. They might supplement these 
exercises by tasks involving reverse 
engineering or data reconstruction 
from public data sets, such as the 
one have described here.

Understanding of the phenom-
enon Penrose had been studying 
improved considerably after the late 
1950s, when it was found to be a 
genetic disorder caused by the pres-
ence of all/part of a third copy of 
chromosome 21 (“trisomy 21”). The 
terminology has also improved: what 
we today call Down (the preferred 
North American term) or Down’s 
syndrome goes back to the name of 
a 19th century English physician 
who first accurately described its 
phenotype. Penrose played a key role 
in having this terminology adopted.

As the various genotypes behind 
Down’s syndrome became better 
understood, the overall risk function 
also came to be understood as a mix 
of a flat line, independent of moth-
er’s age, that dominates at younger 
ages, and a steeply rising curve that 
dominates at the older ages.

However, these improved under-
standings of the biology should not 
deter teachers from introducing the 
now-unpacked 1933 data set (or the 
more complete but also challenging 
one on maternal age and birth order 
from 1934) in their teaching of study 
design and regression models. As 
we have documented, the various 
approaches to analyzing this data 
set show how statistical knowledge 
and statistical methods evolve one 
study/step at a time. Nor should 

we be so confident as to think that 
we ever truly and fully understand 
the theory that underlies our mod-
ern statistical procedures. Some of 
the best understanding comes from 
examining our misunderstandings 
and our faulty intuition.  
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