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Lionel Penrose’s Statistical
Consultant and Lessons
from the Statistical

“Sudoku” They Left Us

James A. Hanley and Supratik Roy

ionel Penrose’s 1933 study
was one of the first to estab-
lish that “the father’s age is
not a significant factor in the risk
of Down’s syndrome, while the
mother’s age is to be regarded as
very important.” We identify the
statistical consultant who helped
Penrose improve on the prevailing
regression methods for handling
binary responses. Using a form of
“statistical sudoku,” we explain how
to create complete data sets from
the summary data Penrose worked
with and shared, and we describe the
surprises we got when we applied
modern methods to these data sets.
The story is a mix of epidemiol-
ogy, genetics, statistics, optimization,
history, and statistical archaeology.
It is a chance to reflect on how far
we have come in statistical methods
and computing in the last 90 years
but also an important lesson on what
we have forgotten or missed along
the way.

The 1933 Analyses
and the Until-Now-
Unknown Statistical
Consultant

Penrose, a physician, geneticist, and

statistician, told us where his data
came from:

[...] 150 families of the human
species containing Down’s
syndrome among the chil-
dren. Every family included
was visited personally and,
among other things, the ages
of the parents at the birth of
each child was [sic] carefully
recorded: miscarriages and all
individuals in whom a diag-
nosis of normality or Down’s
syndrome could not be made
with certainty were excluded.
No obvious disparity was
observed between the ages
of the parental pairs, which
were distributed in a man-
ner resembling that found by
pooling all married couples
in the general population [...]

From what we can tell, Penrose
did all of his analyses using three
sets of marginal (2-D) frequencies,
which he provided in a single table
titled “Summary of Data.”

It summarized the data on 154
cases of Down syndrome and 573
normal' children from these same
150 families. With just the last
row label and the last column label
altered to reflect modern-day ter-
minology, we have reproduced that
table in Figure 1, and on our web-
page (hbttps://jhanley.biostat.megill.
ca/StatisticalSudoku). It contained

the three (2-D) marginal distribu-
tions but stopped short of giving
the full 3-D distribution. Penrose
omitted the cell-specific distribu-
tions of N and D’s.

Penrose’s challenge was how
to deal with the tricky statistical
issue that today we call confound-
ing. The strong correlation of the
parent’s ages means that when the
father’s age or the mother’s age is
considered on its own, the prob-
ability that a child is affected by
Down’s syndrome will seem to be
strongly related to that parent’s age.
So, how to disentangle the separate
contributions?

Penrose’s First Method
of Analysis

Penrose’s first approach was bor-
rowed from an eminent Ameri-
can geneticist. A decade earlier, in
research on essential factors in the
occurrence of congenital defects
in guinea pigs, Sewall Wright had
used partial correlations to show
that once one removed (eliminated)
the effect of the mother’s age, there
was no effect of the father’s age.
“Attempt[ing] a similar treatment,”
Penrose calculated the three crude
and two partial correlations shown

in Table 1.

"Today, one might refer to children who are or are not “affected by Down Syndrome.” We will sometimes use the original and sometimes
the modern, and, to accommodate international readers, we will use both Down and Down's syndrome.
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Figure 1. Reproduction of Penrose’s Table I. The abbreviation “N” {for “Normal”) used in the penultimate row, and column labels remain
unchanged, but the letter “D" (abbreviation for “Down Syndrome”) used in the ultimate row and column labels has been selected to
reflect modern-day terminology. As is discussed in the next section, the last two rows contain two errors: One needs to change the 4:5

at maternal age 46 to a 3:6 split and the 3:1 af maternal age 47 to a 2:2 split.

The two “crude” correlations
involving the binary indicator D
(affected or not) are calculated from
the two corresponding marginal
frequencies (i.e., they are collapsed
over (i.e., they ignore) the age of
the other parent). They are both
strong. Not surprisingly, the cor-
relation between the parents’ages is
very high: 0.829. But when Penrose,
as social scientists like to say, “par-
tialed out” the effect of the age of

that other parent, the effect of the
mother’s age remained, but the effect
of the father’s age disappeared. As he
went on to say in his paper, paternal
age is not a significant factor, while
maternal age is to be regarded as
very important.

Today the idea of computing
a Pearson correlation between a
binary (0/1) Y and a quantitative
X seems strange, but it was com-
mon back then. However, Penrose

did anticipate readers’ discomfort
with correlations involving a binary
all-or-none) variable, so he also used
a crisper alternative analysis.

Penrose’s Second
Method of Analysis

As many people still do with data
from “case-control” studies, Penrose
first compared the mean parental
ages of the Down syndrome and

CHANCE

21



VOL. 38.3, 2025
22

Table 1—Correlations, Crude and Partial, Obtained from Data Summarized in
Penrose’s Table, where “Downs” is an Indicator (0/1) of Down’s Syndrome

Downs, Father’'sAge
+0.294 + 0.034*

Crude

Downs, Mother’sAge

Father’sAge, Mother’'sAge
+0.829 + 0.012

+0.362 + 0.032

Downs, Father’'sAge

eliminating Mother’s Age

—0.011 +£0.04

0.294 — 0.362x0.829
(1—0.3622)(1—0.8297)

Partial

Downs, Mother’sAge
eliminating Father’s Age

+0.221 +0.04

0.362 — 0.294x0.829

* the values following the =+ signs are probable errors.

(1—0.2942)(1—0.8297)

Table 2—Mean Ages of Parents of Down’s Syndrome and
Normal Children, with Expected/Predicted Means

Father Mother
Actual Expected Actual Expected
Down’s 39.383 39.471 37.253 35.712
Normal 33.830 33.803 31.249 31.680
Difference 5.553 5.668 6.004 4.032
-0.115 +1.972
(SE 0.392) (SE 0.341)
Age of Father < 4.304 + 0.944 x Age of Mother
7.120 + 0.726 x Age of Father = Age of Mother
non-Down syndrome children. When he substituted the observed Penrose’s
In the two parent-specific com- mothers” ages (here 35.7 and 31.6) Never-Mentioned

parisons (means 39.3 vs. 33.8 and
37.2vs.31.2,shown under “Actual”
in Table 2), the parents of children
with Down syndrome are decid-
edly older.

But the differences leave open
whether there is just one culprit
or two joint culprits. To settle this,
Penrose used the two fitted equa-
tions to compute the expected
(predicted) age of fathers, given

the mothers’ ages, and vice versa.

into the first equation to get the
expected ages of the fathers, he
found that they were very close to
the observed ones. Conversely, when
he proceeded in the other direction,

and substituted the observed fathers’

ages into the second equation, he
got two expected mothers’ ages that
don’t match very well with those he
observed. The discrepancy of almost
two years left Penrose in no doubt as
to which parent’s age drives the risk.

Consultant, 1932

In2007,in a fresh look at that second
method, Oliver Penrose brought out
some of the subtleties that under-
lay the apparent simplicity of the
“beautiful method of analysis”in his
father’s 1933 paper. Oliver, born in
1929, still remembers that “when I
was about four years old[,] I would
sometimes venture into my father’s

study, to find him doing what I



3L October 1932,

Dr. L. Penrosae,

Royal :Hastern Counties' Institution,
Colchester.

Dear Dr. Pearose:

You ask how many families will be required to give
Kt

significance to the results.

The anewer is, the worse the

data the better it fits any theory (except of course the true
one). So that if some material made the paternal difference
significant your results would be changed, and if it is not

I do not understand what {s the variate you call inci-

dence of mongolism. As far as I can eee you have two

obeerved two-way distributions of Mothers' age (.r) and

Fathers' age (y), one for mongols and one lor normals.

These supply a common value (based on poolea products)

D

changed the paternal difference will remain insignificant.

Actually I should like to see more than 52 and 184 respec-

of tha regression of Fathers' age om Mothers' aye, i.e.

oty on X3
Y = 4x ve.

You wish to compare .E for mongols with £ for normals,

and this {s a araight & test.

Equally you can compare 7 -2 zor mongols v. normals,

with a known standard error.

Figure 2. Reply from R.A. Fisher to Penrose’s October 29 lefter. Some of their terminology is no longer used. Image cour-

tesy of University of Adelaide.

described at the time as ‘red and
blue busywork.”

Sixty years later he realized, on
looking up the 1933 paper, that the
work his father was doing with his
red and blue pencils may well have
been the computations for that
paper. He described the collection
of this data—"“a zour de force of dedi-
cated field work by his father and
his two assistants working from the
Royal Eastern Counties Institution
in Colchester”—as a group effort:
“But it was my father on his own
who invented the method of analysis
that induced this confusing jumble
of data to give up its secret.” Until
author Hanley contacted him in
2014, Oliver Penrose was not aware
of some relevant correspondence in
the Penrose Papers at University
College London (bztps://archives.
ucl.ac.uk/CalmView). This archival
material has since been digitized
and put online, and it reveals a
hitherto-unknown consultation
regarding the statistical methods
used in that paper.

I hope the "normal’children have a real physical existence,

tively if these are availabla.

lnd:;ob merely inferrad from stetements of birth order

reaspecting the mongols.

variate,

On October 29, 1932, Penrose
wrote to “Dr. Fisher,” telling him
he had been “working out some
statistical results” in connection
with mother’s age [M] and father’s
age [F] and their relative affects in
Down’s syndrome. Using the term
“incidence of Down’s syndrome” for
what today we would call the 0/1
indicator variable, he shared with
Fisher the following three crude
correlations calculated from the first
50 families available: M and inci-
dence of Down’s syndrome 0.44; F
and incidence of Down’s syndrome
0.34; M and F (for every child in
each family) 0.73, along with the
two partial correlations: between M
and incidence of Down’s syndrome
(eliminating F) 0.30; and between F
and incidence of Down’s syndrome
(eliminating M) 0.03. He then got

to “[t]he question I want to ask you”:

How many families will be

If so,the comparison suggested

here would ba perfectly sound, and I think you will agree,
much better than partial correlations with an imaginary

Yours sincerely,

available nearly 200 families
and have every reason to sup-
pose that similar figures will
be obtained from the whole
group to those I have found in
the first 50 families. The ques-
tion of significance is rather
troublesome because I am
not sure what the effect is of
having several of the children
in the same family and am
doubtful whether the ordi-
nary methods of finding the
standard deviations of these
coefficients are applicable
here. If you think that about
180 families would give a sig-
nificant result, it seems to me
that it is an elegant method of
demonstrating what has been
rather a vexed question for
some time.

—from the Penrose archives

at UCL.

required to give significance
to these results, which appear
to show that maternal age
is of importance but pater-
nal age insignificant? I have

The UCL archives do not con-
tain Fisher’s reply, but a carbon
(and now digitized) copy of it is
available online at the University of
Adelaide. It bears out the present
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Table 3—Some Developments in Regression-Type Models for Binary Responses, 1933-1973

Year  Author(s) Development

1936  Fisher The Use of Multiple Measurements in Taxonomic Problems. (LDA) Ann. Eugenics.
1952 Duncan, Rhodes Multiple [Probit] Regression with a Quantal Response (Meeting Abstract)

1955  Berkson Max. likelihood and min. x? estimates of the logistic function (JASA)

1958  Cox The regression analysis of binary sequences (JRSS-B)

1962  Cornfield Joint dependence of risk of CHD on ... : a discriminant function analysis (Fed. Proc)
1966 Cox Some procedures connected with the logistic qualitative response curve. (Essays)

1967 Cornfield, Kannel Multivariate Analysis of Risk of Coronary Heart Disease in Framingham (JChronicDis)
1967  Walker, Duncan Estimation of Probability of an Event as Function of Several Independent Variables (B’ka)
1972  Nelder, Wedderburn  Generalized Linear Models (JRSS-A)

1973 McFadden Conditional logit analysis of qualitative choice behavior (Book Chapter, Economics)

VOL. 38.3, 2025
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authors’ observation that often, it is
not the original question (here to
do with sample size and standard
errors when one has correlated fam-
ily data) one puts to the consultant
that matters most. Instead, as in the
reply shown in Figure 2, it is the
entirely different way of looking at
the data that an outside consultant
suggests. A lot has been written
about Fisher’s disdain for some of
Karl Pearson’s work, and there is
a hint of it in the first sentence of
his reply. But this is immediately
tollowed by a very insightful and
transparent approach to settling
the issue of whether the father’s
age matters: use the fathers’ ages
corrected for mothers’ ages.

Fisher’s next paragraph addressed
the question of sample size, and then
he ends with what all statisticians
should also worry about, the qual-
ity of the data. And he can’t resist
taking a parting shot at the idea of
using correlations using imaginary
(“binary”) variates—his adversary
Pearson often used such variates
in correlations.

2023: Reconstructed
Data, Modern
Analyses, and

a Surprise

Listed in Table 3 are some of the
statistical tools that have been
developed since then to specifi-
cally handle all-or-none outcomes

represented by “imaginary” (binary)
variates. And so, a decade ago (not-
withstanding the “outcome-based”
selection of families and the fact that
the data is not segregated by fam-
ily) we asked students in a graduate
data-analysis course to apply them
to the data in Penrose’s table.

However, they weren’t able to
convert these frequencies into a
contemporary data frame with 727
rows (one per child) and three col-
umns: mother’s age, father’s age,
and the Bernoulli variate affected
or not—or, equivalently, 325 rows,
one per cell, of binomial splits—that
would allow them to apply these
modern day regression techniques.
'Their main complaint was that they
were missing the cell-specific splits
of the frequencies of affected and
unaffected children. And, to add to
their frustration, they noticed that
Penrose’s data-tables had atleast one
error that might not be resolvable,
or might only after a considerable
amount of trial and error.

In an effort to reconstruct the
complete data, JH put Penrose’s
table online and offered a prize for
splitting (unpacking) the frequencies.
He didn’t get much interest in this
challenge—which he called a “Statis-
tical Sudoku”—until the summer of
2023 when he visited his alma mater
and met his co-author, SR.

Reconstruction

SR’s first idea was to try Bayesian
methods, which are often used to
reconstruct joint distributions from
marginal ones. But we effectively
had only one sample or view. In
computed tomography imaging, for
example, one reconstructs the tissue
densities in a cross-section using as
many marginal views as there are
rotations of the radiation source.
The traditional techniques, such as
those used in compressive sampling/
sensing, need a sufficient number of
samples to estimate the parametric
part of the model. Moreover, any
such reconstruction would have to
be model-based.

Instead, he noted that the chal-
lenge was similar in structure to a
network flow problem, known as
the “optimal transport” problem in
the optimization literature. Thus
it can be seen as an integer linear
programming problem. However,
when he coded it, the 1p function in
the 1pSolve package in R could not
find a feasible solution. He traced
the imbalance in the system back
to errors in Penrose’s table: whereas
the row-specific totals for the dif-
ferent father’s ages (at the rightmost
margins of Table 1) summed to the
overall numbers of 573 normals
and 154 cases, the column-specific
totals for the different mother’s ages
summed to 575 and 152. When
he changed the 27:7 marginal
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Figure 3. Two “Sudoku” solutions (one per panel), along with the linear discriminant and logistic regression functions fitted to the 3-D data
corresponding to each of these two solutions. (See text for two minor pre-processing corrections to the printed Table 1 in Penrose, 1933.)
Within each panel, the imputed numbers of Downs and normal children within each “parental-ages” cell are shown in red and gray respec-
tively. The parent-specific marginal (2-D) distributions are shown along the bottom and rightmost margins, and the overall numbers in a slightly
larger font at the bottom right corner. The boundary implied by each linear discriminant function is shown in blue.

frequencies in the mother-aged-34
category to a 25:9 split, the result-
ing mean maternal ages were lower
than those reported in the text of
Penrose’s article. However, by pro-
ceeding systematically, we found that
changing the 4:5 split at age 46 to a
3:6 one, and the 3:1 split at age 47
to a 2:2 one gave mean ages—and
a crude correlation—that numeri-
cally matched those reported in the
article. Thus we are confident that the
errors were in the typesetting of the

table and that Penrose did not use the
typeset version in his computations.
Once these corrections were
made, SR was able to use the 1p
function to find a feasible solution.
Our website gives the technical
details (hzzps://jhanley. biostat. mcgill.
ca/StatisticalSudoku).

Our First Reanalyses

Once he had obtained a solution
(leftmost panel of Figure 3), we
revisited Penrose’s conclusion using

two approaches developed since
then. First we fitted a linear dis-
criminant function of the parental
ages—a technique that Fisher pub-
lished in 1936, just three years after
advising Penrose on how to avoid
calculating correlations involving
an “imaginary” Y variate. As can be
seen from that panel, the weight
(coefficient) for the mother’s age is
more than 20 times the one for the
fathers’ age, so the “dividing line”
between Down’s syndrome and
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normal children is almost vertical
(i-e., almost entirely determined by
the age of the mother).

Our second approach was to
use a logistic regression model, a
technique with several histori-
cal roots. A lesser-known root is
the discriminant function that
Cornfield derived from data col-
lected in the Framingham Heart
Study and then converted into a
logistic-shape risk (probability)
function of the scores. The panel
inset shows that, just as in Penrose’s
analyses, of the two one-parent
logistic regressions, the one involv-
ing the mother is the stronger one—
but that in the model that considers
them jointly, the coeflicient for the
mother’s age dominates. Indeed,
given the connection that Cornfield
exploited, it is not surprising that
the two coeflicients in the logistic
regression (0.162 and -0.011) are
close to their counterparts in the
linear discriminant function (0.163
and -0.070).

Muiltiple Solution Sets—
and a Surprise

JH had contacted Oliver Penrose in
2014 and asked where we might find
the raw data his father had used, but
he had no suggestions beyond those
locations where we had already
looked. But he did point out that
“[our] ‘sudoku’ problem appears to
have multiple solutions in general”
and provided a toy example. At that
time, JH would have been happy
to have even one. But now, just by
altering the order in which the 398
constraints on the 325 unknowns
appear in the (quite sparse) con-
straints matrix, we can use the 1p
software to generate as many sepa-
rate solutions as we wish. Two such
solutions are shown in Figure 3.
Before arriving at these solutions,
JH had loosely likened the multiple
possible solutions to the different
data set “copies” used in multiple
imputation when one has missing

values. Thus, after fitting a multiple
logistic regression to each of the (say
m) solution-sets, he envisaged first
computing the average variance-
covariance of the m vectors of fitted
coefficients, and then, employing
“Rubin’s Rule,” adding to it the
between-copy variance-covariance
of the m vectors.

We were surprised to learn
that—as is hinted at in Figure 3—
every solution set yields exactly the
same vector of fitted coefhicients.
The invariance also held when we
fitted a linear discriminant function
of the parental ages and when we
computed the old-fashioned par-
tial correlations that Wright and
Penrose had used.

After some reflection, the reason
for this invariance became clear to
us. The marginal totals serve as suf~
Jficient statistics. Nowadays, tedious
calculations are carried out by a
machine rather than a human whose
job-description was “computer;”and
so the labor-saving property of su/~
Jficient statistics is less appreciated/
used. Our website shows the form
of the sufficient statistics in a more
general form of a multiple logistic
regression where the parental age
(M and F) effects are represented
as two separate splines; with no
product terms involving both ages.
In the special/simplest case where
they are just linear, and additive,
the sufficient statistics for the three
parameters consist of three num-
bers: the number of cases of Down’s
syndrome: 154; the sum of the ages
of their 154 mothers: 5,736 years;
and their 154 fathers: 6,065 years.
Equating the partial derivatives of
the log-likelihood to zero results
in three balancing equations that
equate these three sufficient statis-
tics to their three expected/fitted
values. Finding this balance requires
an iterative search, but within any
given parental age “cell” one does
not need to know how many of the
children in the cell were affected and
how many were not.

Penrose’s calculations involved
just one pass though the data. His
computing equipment consisted of
a “handle-powered desk calculating
machine called the Brunsviga.” He
exploited the labor-saving “suffi-
ciency principle” by processing the
325 cell frequencies to compute the
marginal relationship between the
parents’ ages, the 31 x 2 frequencies
to arrive at the marginal relation-
ship between the mother’s ages and
Down’s syndrome, and the 42 x 2
frequencies to arrive at the marginal
relationship between the fathers’
ages and Down’s syndrome.

In the 1970s, when non-human
computers were making the concept
of sufficiency less relevant in applied
statistics, Stephen Stigler, writing
in Biometrika, advanced another
reason: The concept “depends so
strongly on the assumed form of
the population distribution.” Since
then, the growth of computational
methods in Bayesian statistics has
largely restored the central role of
sufficient statistics, but also brought
model fit/adequacy to the forefront
again. In that same cautious spirit
that Stigler alludes to, the additional
analyses shown on our website are
limited to form(model)-free mea-
sures that align with Penrose’s focus
on null-hypothesis testing. We leave
it to interested readers and teachers
to explore model-based approaches,
while recognizing the limited resolv-
ing power provided by the large age
correlations and the relatively small
numbers of events in the data set.

Discussion

Even though Penrose’s “response”
variable was binary, partial correla-
tions were all that were available to
him at the time. However, as the
archives now document, it was not
Penrose who “on his own invented
[...] the [alternative] beautiful
method of analysis” his son sub-
sequently extolled. Rather, it was
Ronald Fisher who showed him



an alternative to calculating cor-
relations involving an “imaginary”
Yvariate.

'This was not an isolated fix. Just
a few years later, Fisher general-
ized this method of exchanging the
role of the response and predictor
variables when he published the lin-
ear discriminant function for use in
taxonomic problems.

It would take several decades
before the fitting of generalized
linear models for binary response
data became practical. But by 2014,
when we gave Penrose’s data to the
students in our data analysis course,
the R software for fitting a logistic/
probit regression model was widely
and freely accessible. All they had
to do was to create the data-frame.
However, because Penrose seemed
to “withhold” some of his data, they
were unable to do so. They did not
have the background training in
mathematical statistics to go back
to first principles and see their way
around this difficulty. Their teach-
ers could have, but they preferred a
brute force approach.

At first, we were quite proud of
our 2023 use of integer linear pro-
gramming to provide thousands of
data-frames with individual-level
data, all in the blink of an eye. But
we were soon brought back down
to earth when we (or, rather, the
computer!) fitted a binary regression
model to these different solutions,
all with the same marginal totals
as Penrose worked with. No matter
the within-cell binomial frequen-
cies, the fitted coefficients did not
change. Penrose’s marginal totals
acted as sufficient statistics.

In 1933, the concept of “suffi-
cient statistics”had a very important
application. It reduced human com-
putational labor. In 2023, sufficient
statistics (and exponential families)
are concepts that are of practical use
in intensive Bayesian computations,
and in data-sharing policies that
encourage data privacy. However,
for the most part they are limited to

courses in mathematical statistics
and inference, where unfortunately
the teaching of them consists mainly
of exercises in calculus. Today’s
computer-processing speeds make
it harder to motivate reducing the
data to sufficient statistics. In line
with the pleas of Nicholas Horton
(Amherst College) and others to
make such courses more relevant,
today’s teachers could encourage
their students to appreciate the
statistical importance of the con-
cept. They might supplement these
exercises by tasks involving reverse
engineering or data reconstruction
from public data sets, such as the
one have described here.
Understanding of the phenom-
enon Penrose had been studying
improved considerably after the late
1950s, when it was found to be a
genetic disorder caused by the pres-
ence of all/part of a third copy of
chromosome 21 (“trisomy 21”). The
terminology has also improved: what
we today call Down (the preferred
North American term) or Down’s
syndrome goes back to the name of
a 19th century English physician
who first accurately described its
phenotype. Penrose played a key role
in having this terminology adopted.
As the various genotypes behind
Down’s syndrome became better
understood, the overall risk function
also came to be understood as a mix
of a flat line, independent of moth-
er’s age, that dominates at younger
ages, and a steeply rising curve that
dominates at the older ages.
However, these improved under-
standings of the biology should not
deter teachers from introducing the
now-unpacked 1933 data set (or the
more complete but also challenging
one on maternal age and birth order
from 1934) in their teaching of study
design and regression models. As
we have documented, the various
approaches to analyzing this data
set show how statistical knowledge
and statistical methods evolve one
study/step at a time. Nor should

we be so confident as to think that
we ever truly and fully understand
the theory that underlies our mod-
ern statistical procedures. Some of
the best understanding comes from
examining our misunderstandings
and our faulty intuition.
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